Publications

20-May-2022

Talenton V, Baby V, Gourgues G, Mouden C, Claverol S, Vashee S, Blanchard A, Labroussaa F, Jores J, Arfi Y, Sirand-Pugnet P, Lartigue C

Genome Engineering of the Fast-Growing Mycoplasma feriruminatoris toward a Live Vaccine Chassis.

ACS synthetic biology. 2022-05-20; 11.5: 1919-1930.

Development of a new generation of vaccines is a key challenge for the control of infectious diseases affecting both humans and animals. Synthetic biology methods offer new ways to engineer bacterial chassis that can be used as vectors to present heterologous antigens and train the immune system against pathogens. Here, we describe the construction of a bacterial chassis based on the fast-growing , and the first steps toward its application as a live vaccine against contagious caprine pleuropneumonia (CCPP). To do so, the genome was cloned in yeast, modified by iterative cycles of Cas9-mediated deletion of loci encoding virulence factors, and transplanted back in subsp. recipient cells to produce the designed chassis. Deleted genes encoded the glycerol transport and metabolism systems GtsABCD and GlpOKF and the Mycoplasma Ig binding protein-Mycoplasma Ig protease (MIB-MIP) immunoglobulin cleavage system. Phenotypic assays of the chassis confirmed the corresponding loss of HO production and IgG cleavage activities, while growth remained unaltered. The resulting mycoplasma chassis was further evaluated as a platform for the expression of heterologous surface proteins. A genome locus encoding an inactivated MIB-MIP system from the CCPP-causative agent subsp. was grafted in replacement of its homolog at the original locus in the chassis genome. Both heterologous proteins were detected in the resulting strain using proteomics, confirming their expression. This study demonstrates that advanced genome engineering methods are henceforth available for the fast-growing , facilitating the development of novel vaccines, in particular against major mycoplasma diseases.

PMID: 35511588